Biostratigraphically Constrained Ages of Mississippian Mixed Carbonate-Siliciclastic Sequences, STACK Play, Andadarko Basin, Oklahoma

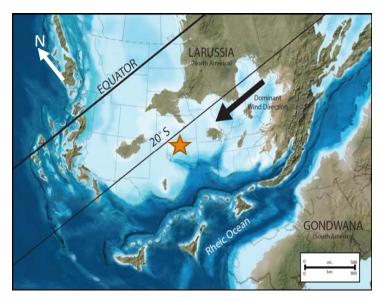
Brandon Stukey¹, Cory Godwin², James Puckette¹

¹Oklahoma State University, Boone Pickens School Of Geology, Stillwater, Oklahoma

²Consulting Geologist, Tulsa, Oklahoma

Outline

- Overview & Significance
- Background
- Data & Methods
- Results
 - Facies Associations & Depositional Environments
 - Sequence Stratigraphic Correlation
 - Biostratigraphic Constraints
- Conclusions
- Questions

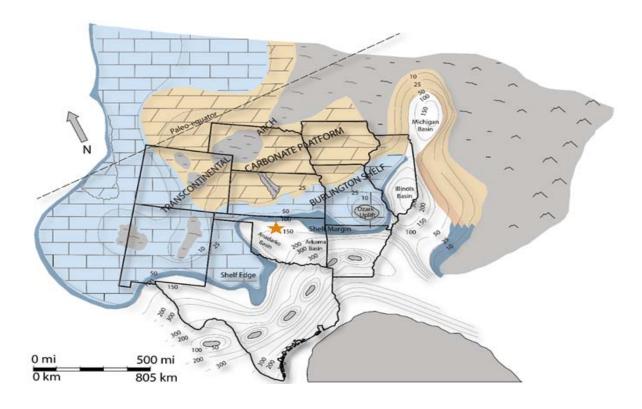

Objectives & Significance

Constrain the ages of Mississippian mixed carbonate-siliciclastic sequences in the study area through conodont biostratigraphy and sequence stratigraphy

- 1. Establish a sequence stratigraphic framework based on depositional facies and vertical stacking patterns within the Pan American, Barnes D-2 core
- 2. Correlate the sequence stratigraphic framework to four principal conodont biozones and electrofacies from wireline logs
- 3. Illustrate the Mississippian stratigraphic architecture in the study area by construction of a wireline log cross section oriented subparallel to paleodip
- Results of this study provide a mechanism for better constraining ages of Mississippian intervals in the study area. This allows for development of more temporally accurate depositional models of the STACK play.

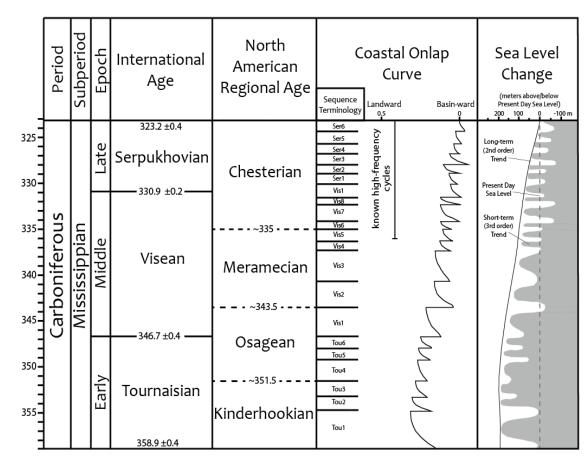
Geological Background

EARLY MISSISSIPPIAN (345 MYA)

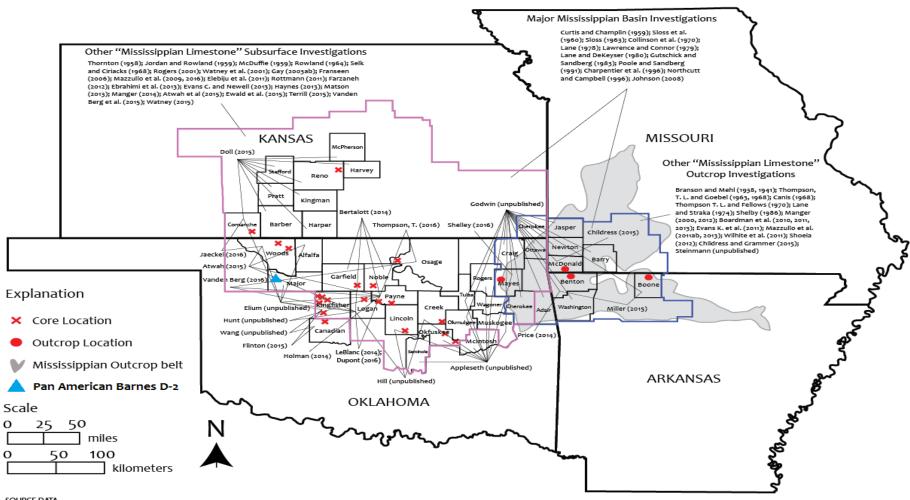

Modified from Blakey, 2014

LATE MISSISSIPPIAN (325 MYA)

Modified from Blakey, 2014


Geological Background

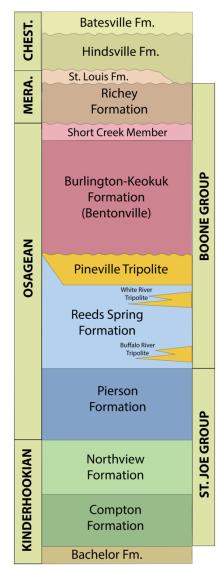
Paleogeographic time-slice map during middle Osagean. Modified from Gutschick and Sandberg, 1983; and LeBlanc, 2014


Mississippian Sea Level

- Transitional from Devonian greenhouse to Gondwana icehouse
- Overall decline throughout Mississippian
- Known high-frequency cycles during mid to late Mississippian

Modified from Gradstein et al., 2012; Haq and Schutter, 2008; and Hunt, 2017

(OSU Mississippian Consortium, 2017)


SOURCE DATA

State and county lines created from the Oklahoma University (OSU) Library's McCasland Map Collection (Map ID: G4020 1975). Simplified outline of the informally known Mississippian outcrop belt patterned after Mazzullo et al. (2011). Areas with core or outcrop control depicted by compiling their locations onto this map with permission from all on-going and prior workers of the OSU-Industry Mississippian Consortium.

Modified from Hunt, 2016

Regional Stratigraphy

- Outcrop research by Mazzullo et al. (2013) developed modifications to Mississippian section nomenclature to standardize group, formation, and member names within the region
- Biostratigraphic research identified various conodont zones within outcrop belt
 - Thompson and Fellows (1970)
 - Boardman et al. (2013)
 - Godwin (2018)

Stratigraphic column of the Mississippian system. From Mazzullo et al., 2013

Data

Core

- > Pan American Barnes unit D-2
- Section 23, T. 22N., R.16W in Major County, OK
- > 1,188 linear feet of core with raster images provided by OPIC

Biostratigraphic Data

- > Godwin (2018) identified four principal conodont biozones in Meramecian and Chesterian strata in NE Oklahoma
- Recognized the four principal biozones in the Pan American Barnes D-2 core

Thin Sections

- > 25 thin section photomicrographs supplied by OPIC
- > 11 thin sections prepared from reclamation plugs supplied by OPIC

Wireline Logs

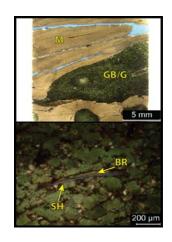
- > 30 wells including digital gamma-ray and resistivity curves
- Well and digital log data imported from IHS Energy

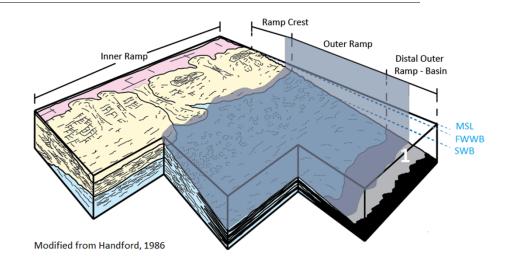
Methods

- Establish a sequence stratigraphic framework based on depositional facies and vertical stacking patterns within the Pan American, Barnes D-2 core
- Correlate the sequence stratigraphic framework to four principal conodont biozones and electrofacies from wireline logs
- Illustrate the Mississippian stratigraphic architecture in the study area by construction of a wireline log cross section oriented subparallel to paleodip

Idealized Facies Stacking Pattern

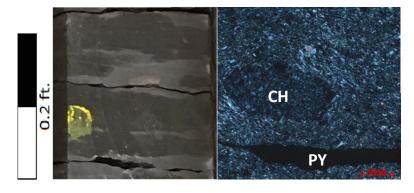
- The six facies identified in the Pan Am. Barnes D-2 core
- Representative of facies deposited during one complete rise and fall of sea level
- Blue triangle represents the transgressive phase and the red triangle represents the regressive phase

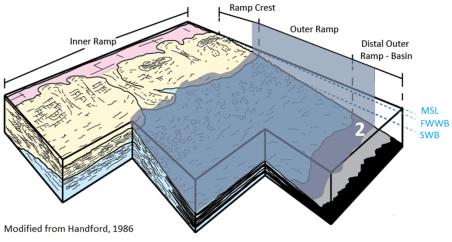

6	Skeletal Packstone
5	Wackstone-Packstone
4	Silty Mudstone-Wackestone / Siltstone
3	Dolomitic Mudstone-Wackestone
2	Shale
1	Glauconitic Shale



Facies Associations

FACIES 1: Glauconitic Shale / Sandstone

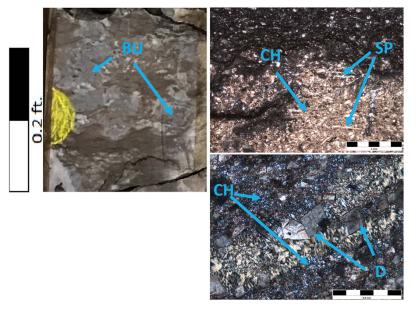

- Glauconite grains (G)
- Brachiopod (BR) with shelter porosity (SH)
- Deposited during initial transgression
- Deep water setting, below SWB

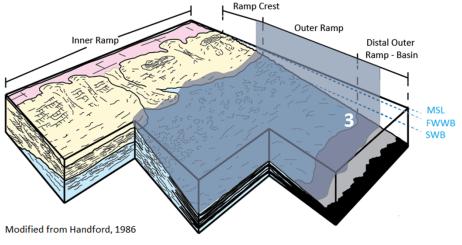

Example from Pan American Droke Unit 1, Kingfisher County, OK (Flinton, 2016)

SBC1 Stukey, Brandon Chase, 9/1/2018

Facies Associations

FACIES 2: Shale

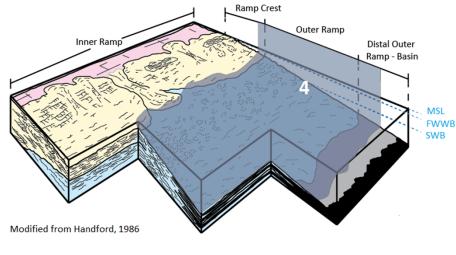



- Illite (surrounding chert filled void/burrow)
- Pyrite (PY)
- Chert (CH) filled voids/burrows

- · Continued transgression
- Distal outer ramp basin, below SWB
- Restricted, low energy setting

Facies Associations

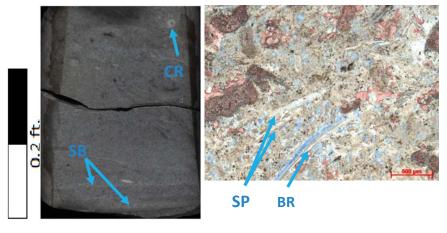
FACIES 3: Dolomitic Mudstone-Wackestone

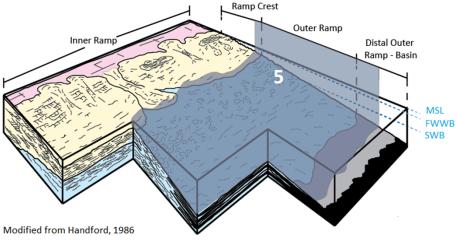


- Bioturbation
- Chert filling burrows (BU)
- Sponge spicules (SP), dolomite (D)
- Outer ramp, below SWB

Facies Association

FACIES 4: Calcareous Siltstone / Silty Wackestone

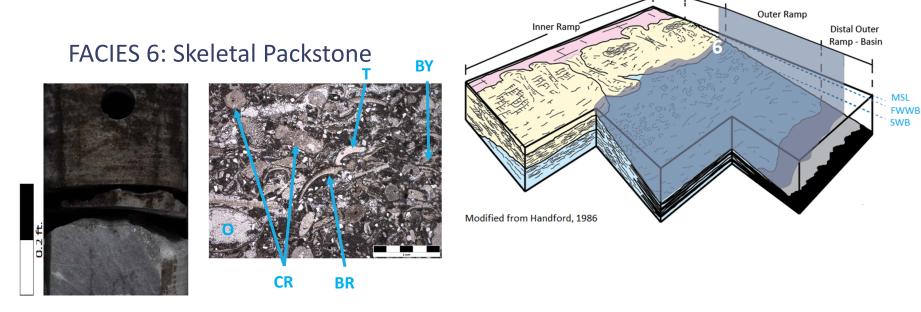



- Crinoids (CR), bryozoan (BY), peloids (P)
- Calcite cement
- Suspension lamination
- Periodic traction-current laminae

- Periodic storm influence
- Outer ramp, at or below SWB

Facies Association

FACIES 5: Wackestone-Packstone



- Crinoids (CR), brachiopods (BR), sponge spicules (SP)
- Partially silicified (siliceous banding (SB))

- Middle to outer ramp
- Between FWWB and SWB

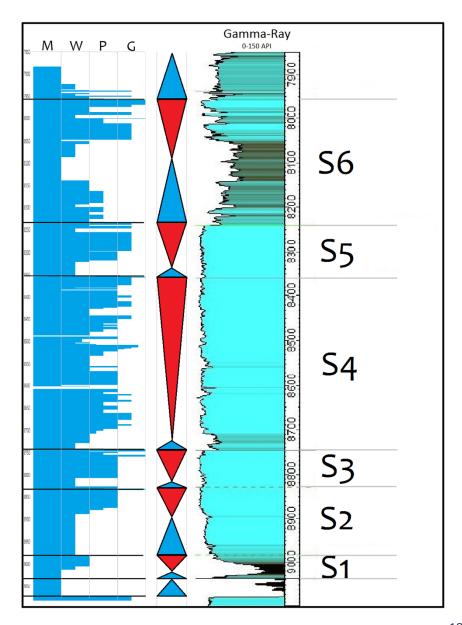
Facies Association

- Crinoids (CR), ostracodes (O), bryozoan (BY), trilobite (T) fragments
- Vuggy porosity in areas
- Oil staining

Proximal outer ramp to distal ramp crest

Ramp Crest

Below or near FWWB


Sequence Stratigraphic Hierarchy

- Overall shallowing upward "2nd Order" super sequence
- Six composite sequences "3rd Order"
- Noticeable higher frequency "4th Order" cycles starting in S4 composite sequence

Figure to the right depicts a generalized facies log based off Dunham classification (left) correlated with the Barnes D-2 gamma-ray log to the right.

Blue triangle = sea level rise Red triangle = sea level fall

(After Flinton (2016), Jaeckel (2016), and LeBlanc (2014))

Biostratigraphic Constraints

- Conodont Recovery from Pan-Am Barnes D-2 core
- Godwin's (2018)
 principal conodont
 biozones identified in
 Barnes core

4 Distinct conodont biozones

Sample No.	Depth (ft.)	Older Forms	G. Texanus	G.pseudosemiglaber	L. homopunctatus	Taphrognathus	Transition form	Cavusgnathus	H.cristula	Hd. Spiculus	G. bilineatus	Godwin Biozones
45	7921.7-7922		_	_	_			Х	X	_	_	
100								х				
139								Х				4
170								х				Biozone 4
196								х			х	Chesterian
209			х					х				
212			Х					х		х		
275	8207.6-8208.2							х			х	
306	8236-8236.5							Х				
308								х	х			
313	8241.6-8242							Х	i i			2
316								Х				3
341								Х				
351	8271.8							х				
366								х				Biozone 3
370								х				Upper St. Louis Fm.
378								х				
395								х				
417								х				
437								х				
446								Х				
472	8345.1-8345.6				х			х				
497	8424-8424.4							х				
515							Х					
575								х				
592	8528.3-8528.8							х				2
600			х									_
610			х					х				
623								х				
632									Х			Biozone 2
637			Х					Х				Lower St. Louis Fm.
640			х									
648			Х					Х				
659			Х		Х			Х				
672												
678								Х				
684	8689.1-8689.9		Х					Х				
687	8698.1-8698.7							Х				
707	8741.3		Х	Х		Х						
711			Х	Х	Х	Х						
716												1
719			Х			Х						
725			Х			Х						
728			Х			Х						Biozone 1
736			Х	Х		Х						Ritchey Fm.
742			Х			Х						
746			Х			Х						
751			Х			Х						
755			Х			Х						
760	8858.5-8859.5					X						

Notable Conodont Taxa

Taphrognathus

 Once absent, no older than Upper St. Louis Outcrop

 If present, Lower St. Louis or older (Biozone 1, 2)

(C. Godwin, personal communication, August 4, 2018)

Core

SEM photo (left) and macrophoto (right) of *Taphrognathus* recovered from the Mississippian outcrop belt in northeastern Oklahoma and the Pan American Barnes D-2 core, respectively.

Notable Conodont Taxa

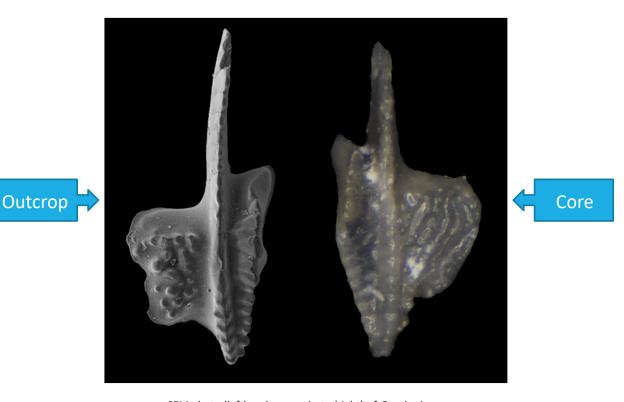
Cavusgnathus

 First appears at base of St. Louis Formation Outcrop

• If present, no older than St. Louis (upper Meramecian)

(C. Godwin, personal communication, August 4, 2018)

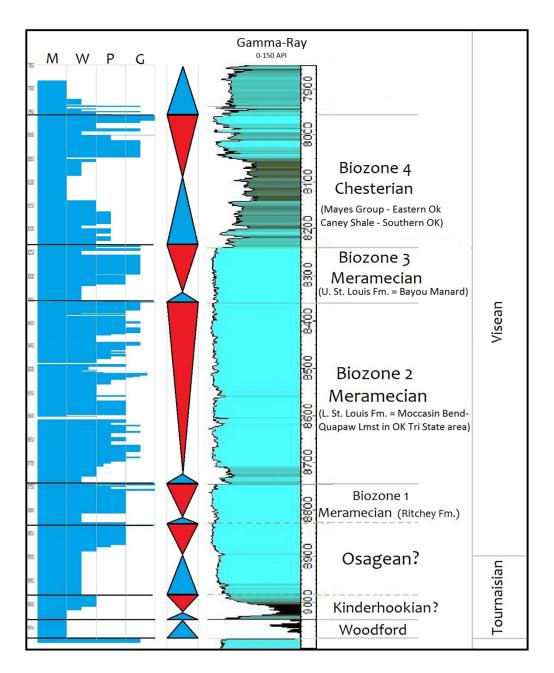
Core Core

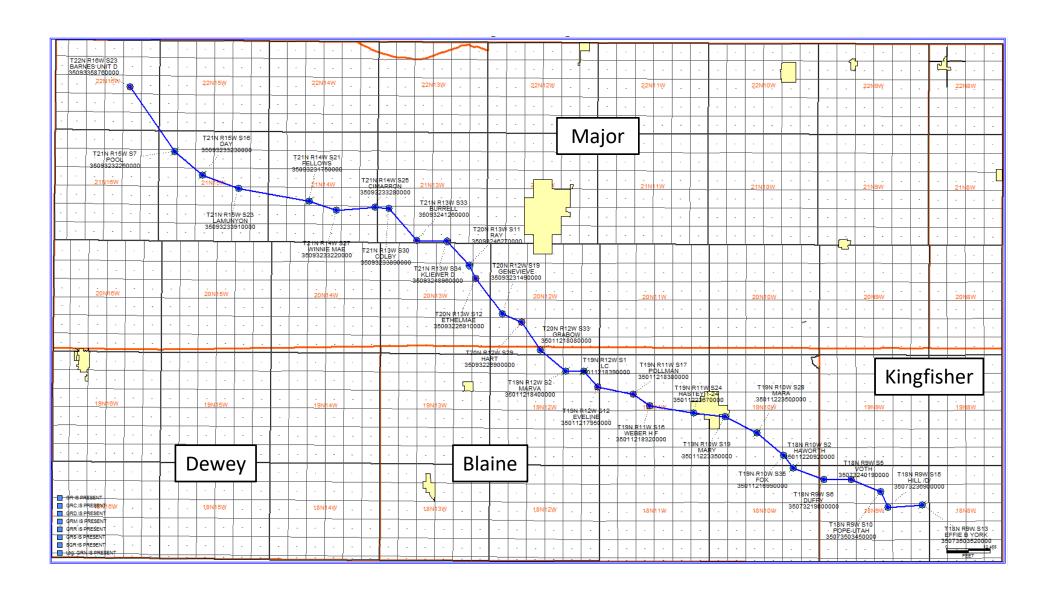

SEM photo (top) and macrophotos (middle and bottom) of *Cavusgnathus* recovered from the Mississippian outcrop belt in northeastern Oklahoma and the Pan American Barnes D-2 core, respectively.

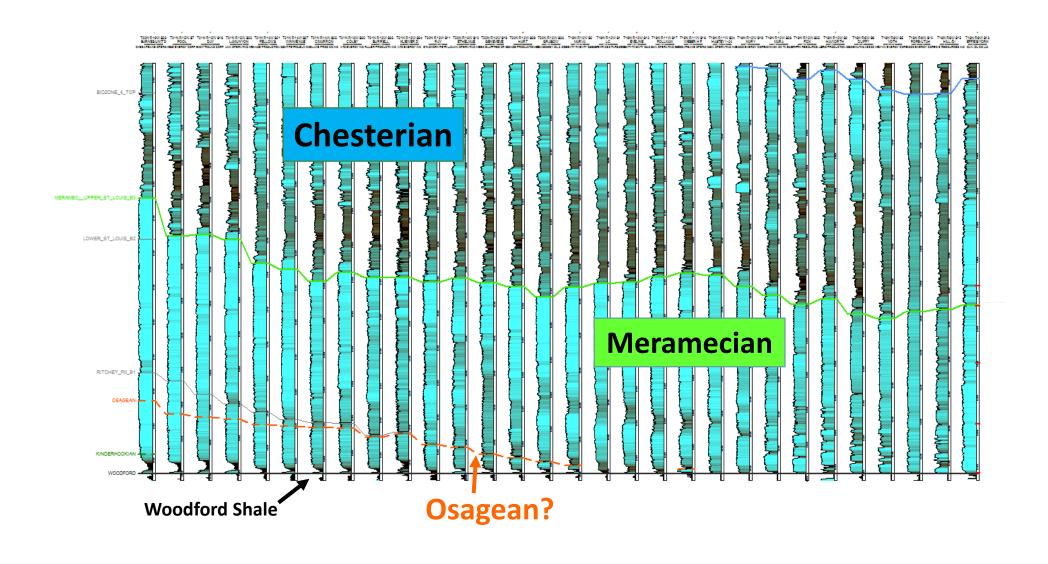
Notable Conodont Taxa

G. bilineatus

Definitively Chesterian (Biozone 4)


(C. Godwin, personal communication, August 4, 2018)




SEM photo (left) and macrophoto (right) of *Gnathodus* bilineatus recovered from the Mississippian outcrop belt in northeastern Oklahoma and the Pan American Barnes D-2 core, respectively.

Biostratigraphically Constrained Ages in Barnes D-2 well

- Contact between biozones 3 & 4 correlates with top of "Miss Lime" or "Meramec-Osage"
- Biozone 2 (informally "Meramec-Osage") is Meramecian
- Biozone 1 (Ritchey Formation) is still Meramecian
- No usable conodont data below dashed line at 8830 ft. If Osagean rocks are present, it would be within approximately 200 ft above the Woodford
- Formation names and their regional outcrop equivalency names shown in figure

Conclusions

- 1. Conodonts in the Barnes D-2 core are the same as those identified from the outcrop.
- 2. 4 Principal conodont biozones
 - 1) Biozone 1 = Meramecian
 - 2) Biozone 2 = Meramecian
 - 3) Biozone 3 = Meramecian
 - 4) Biozone 4 = Chesterian
- 3. The Meramecian-Osagean boundary has not been resolved by conodonts
- 4. Based on the correlation from the Barnes D-2 well in Major County, Sec. 23, T. 22N., R.16W to the Effie B. York well in NW Kingfisher County, Sec. 13, T. 18N., R.9W, the "Miss Lime" section below the "Chester Shale" is mostly Meramecian.

Acknowledgments

- Dr. Jim Puckette
- Dr. Cory J. Godwin
- Carbonate research group at OSU and Dr. Mike Grammer
 - Keller Flinton, Lara Jaeckel, Stephanie LeBlanc
- Industry-Oklahoma State University Mississippian Consortium members
- OGS staff at the Oklahoma Petroleum Information Center
- University of Iowa Paleontological Repository
- Midwest Energy

References

- Blakely, R., 2017, North American key time slices: Deep Time Maps, http://deeptimemaps.com/wp-content/uploads/2016/05/NAM key-345Ma EMiss.png (accessed August 2018).
- Blakely, R., 2017, North American key time slices: Deep Time Maps, http://deeptimemaps.com/wp-content/uploads/2016/05/NAM_key-325Ma_EMiss.png (accessed August 2018).
- Boardman, D.R., Thompson, T.L., Godwin, C.J., Mazzullo, S.J., Wilhite, B.W., and Morris, B.T., 2013, High-resolution conodont zonation for Kinderhookian (middle Tournaisian) and Osagean (upper Tournaisian-lower Visean) strata of the western edge of the Ozark Plateau, North America: Oklahoma City Geological Society Shale Shaker, v. 64, p. 98-151.
- Flinton, K.C., 2016, The effects of high-frequency cyclicity on reservoir characteristics of the "Mississippian Limestone", Anadarko Basin, Kingfisher County, Oklahoma [M.S. Thesis]: Stillwater, Oklahoma State University, 414 p.
- Godwin, C.J., 2017, Lithostratigraphy and conodont biostratigraphy of the upper Boone Group and Mayes Group in the southwestern Ozarks of Oklahoma, Missouri, Kansas, and Arkansas [Ph.D. Dissertation]: Stillwater, Oklahoma State University, 402 p.
- Gradstein, F.M., Ogg, J.G., and Ogg, G.M., eds., 2012, A Concise Geologic Time Scale: Elsevier, p. 99-113, doi: 10.1016/B978-0-444-59467-9.00009-1.
- Gutschick, R.C. and Sandberg, C., 1983, Mississippian continental margins of the conterminous United States: Society of Economic Paleontologists and Mineralogists, v. 33, p. 79-96.

References Continued

- Handford, C.R., 1986, Facies and Bedding Sequences in shelf storm-deposited carbonates— Fayetteville Shale and Pitkin Limestone (Mississippian), Arkansas: Journal of Sedimentary Research, v. 56, p. 123-137.
- Haq, B.U. and Schutter, S.R., 2008, A chronology of Paleozoic sea-level changes: Science, v. 322, p. 64-68.
- Hunt, J.E., 2017, Conodont biostratigraphy in middle Osagean to upper Chesterian strata, north-central Oklahoma, U.S.A. [M.S. Thesis]: Stillwater, Oklahoma State University.
- Jaeckel, L., 2016, High-resolution sequence stratigraphy and reservoir characterization of Mid-Continent Mississippian carbonates in north-central Oklahoma and south-central Kansas [M.S. Thesis]: Stillwater, Oklahoma State University, 368 p.
- LeBlanc, S.L., 2014, High-resolution sequence stratigraphy and reservoir characterization of the "Mississippian Limestone" in north-central Oklahoma [M.S. Thesis]: Stillwater, Oklahoma State University, 443 p.
- Mazzullo, S.J., Boardman, D.R., Wilhite, B.W., and Morris, B.T., 2013, Revisions of outcrop lithostratigraphic nomenclature in the Lower to Middle Mississippian subsystem (Kinderhookian to basal Meramecian series) along the shelf-edge in southwest Missouri, northwest Arkansas, and northeast Oklahoma: Oklahoma City Geological Society Shale Shaker, v. 63, p. 414-452.
- Thompson, T.L. and Fellows, L.D., 1970, Stratigraphy and conodont biostratigraphy of Kinderhookian and Osagean (lower Mississippian) rocks of southwestern Missouri and adjacent states: Missouri Geological Survey and Water Resources Report of Investigations 45, 263 p.